Reconstituted Keratin Biomaterial with Enhanced Ductility

نویسندگان

  • Halleh Atri
  • Elham Bidram
  • David E. Dunstan
چکیده

Nowadays the waste from protein fibres represents an important renewable source for a new generation of biomaterials and promising competitors for carbohydrate based biomaterials. Regenerated keratin biomaterials are biodegradable in vivo and in vitro, biocompatible, and support cell attachment and proliferation; however, their major drawback has been their weak mechanical properties such as ductility. The following study was conducted in an attempt to improve the ductility of reconstituted keratin films obtained from Australian merino wool fibres. Keratin was extracted from wool fibres according to an established protocol proposed by Yamauchi, and then dialyzed and desalted by multiple diafiltration wash cycles. The resulting keratin film was transparent, biodegradable, and, opposite to its predecessors, mechanically durable, possessing a Young modulus about 12.5 MPa with 35% extensibility. The polypeptide chains were found to rearrange themselves in the β-sheet state in this keratin film, which was shown to be semi-crystalline. This film, unlike its predecessors, did not support human cell proliferation. These properties of the diafiltered keratin film have led us to think that diafiltration resulted in producing a totally new keratin film, which is envisaged to find applications in various areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Deep Partial Thickness Burn Treatment with Keratin Biomaterial Hydrogels in a Swine Model

Partial thickness burns can advance to full thickness after initial injury due to inadequate tissue perfusion and increased production of inflammatory cytokines, which has been referred to as burn wound progression. In previous work, we demonstrated that a keratin biomaterial hydrogel appeared to reduce burn wound progression. In the present study, we tested the hypothesis that a modified kerat...

متن کامل

Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions.

Chitosan is an important biomaterial used widely in medical applications. One of the key concerns about its use is the fragile nature of chitosan films. By comparing the component molecular interactions using FTIR, this study attempts to understand how the ductility of chitosan can be improved by blending and copolymerizing with poly(ethylene glycol) (PEG). An improvement in ductility was obtai...

متن کامل

Visible light crosslinkable human hair keratin hydrogels

Keratins extracted from human hair have emerged as a promising biomaterial for various biomedical applications, partly due to their wide availability, low cost, minimal immune response, and the potential to engineer autologous tissue constructs. However, the fabrication of keratin-based scaffolds typically relies on limited crosslinking mechanisms, such as via physical interactions or disulfide...

متن کامل

Keratin from Bovine Horn as a Biomaterial for Wound Healing Application

Introduction Keratins are strong fibrous proteins with high degree of stability, found in hair, wool and in hard tissues such as horn, hoof, and nail. Keratin biomaterials in the form of sponge, films were developed from wool and human hair for various biomedical applications such as wound dressings and neural tissue engineering application. In the present work, an effort has been made to extra...

متن کامل

Structural and Activity Comparison of Native, Apo and Reconstituted Tyrosinase

Background: Mushroom Tyrosinase a potent candidate in clinical studies known as polyphenol oxidase, is a metaloenzyme from the oxidase superfamily widely distributed from lower to higher life forms. It plays a crucial role in sclerotization of exoskeleton in insects, also responsible for skin pigmentation in mammalians. Objective: In this study, after reconstitution of MT by some metal io...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015